| Topic name | Term | Skills developed | Link to subject content | Prior learning | Next link in curriculum | |--|--------|--|--|---|--| | 3.6 Further mechanics and thermal physics 3.6.1 Periodic motion 3.6.1.1 Circular motion | Autumn | MS 0.4 Estimate the acceleration and centripetal force in situations that involve rotation. | 3.6.1.1 Circular motion Motion in a circular path at constant speed implies there is an acceleration and requires a centripetal force. Magnitude of angular speed Radian measure of angle. Centripetal acceleration Centripetal force F = mv2 r = m²2 r | Links from GCSE: Year 9: Forces and motion, including vectors and scalars. Year 10 energy stores, including kinetic and potential energy. Year 11: Newton's laws Links from Year 12 AS Physics: Mechanics and Materials unit: Vectors and scalars, Newton's laws, Work and power | Turning Points (Year 13 spring term) when discussing the discovery of the electron and the deflection by a magnetic field. | | 3.6 Further mechanics and thermal physics 3.6.1 Periodic motion 3.6.1.2 Simple harmonic motion (SHM) | Autumn | AT i, k Data loggers can be used to produce s – t, v – t and a – t graphs for SHM. MS 3.6, 3.8, 3.9, 3.12 Sketch relationships between x, v, a and a – t for simple harmonic oscillators. | 3.6.1.2 Simple Harmonic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a x - x Defining equation: a = - 22 x x = Acos 2t and v = ± 2 A2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. | Links from GCSE: Year 9: Forces and motion, including vectors and scalars. Year 10 energy stores, including kinetic and potential energy. Year 11: Newton's laws Links from Year 12 AS Physics: Mechanics and Materials unit: Vectors and scalars, Newton's laws, Work and power | | | 3.6 Further Autumn | MC 4 / / AT b. c | 5. Maximum speed = ?A Maximum acceleration = ?2 A | Links to GCSE: | |--|---|---|--| | 3.6 Further mechanics and thermal physics 3.6.1 Periodic motion 3.6.1.3 Simple harmonic motion (SHM) | MS 4.6 / AT b, c Students should recognise the use of the small-angle approximation in the derivation of the time period for examples of approximate SHM. | Study of mass-spring system: T = 2? m k Study of simple pendulum: T = 2? l g Questions may involve other harmonic oscillators (eg liquid in U-tube) Variation of Ek, Ep, and total energy with both displacement and time. Effects of damping on oscillations | Year 9: Forces and motion, including vectors and scalars. Year 10 energy stores, including kinetic and potential energy. Year 11: Newton's laws Links to Year 12 AS Physics: Mechanics and Materials unit: Vectors and scalars, Newton's laws, Work and power Required practical 7: Investigation into simple harmonic motion using a mass–spring system and a simple pendulum. | | (3 (Q) Q (PE) | 9086 | |---|------| | ner 1) | | | Links from GCSE: | | | Year 9: Forces and motion, including vectors and scalars. Year 10 energy stores, including kinetic and potential energy. Year 11: Newton's laws | | | Links from Year 12 AS Physics: | | | Mechanics and Materials unit: | | | Vectors and scalars, Newton's laws,
Work and power | | | 11.1. 6 | | | Links from KS3: | | | Heating and cooling in year 8, including internal energy. | | | Links from GCSE: | | | Year 10 Energy stores and transfers | | | Year 10 Thermal energy and insulation,
Specific heat capacity including the RP
for SHC and specific latent heat | | | | | | 3.6 Further mechanics and thermal physics 3.6.1 Periodic motion 3.6.1.4 Forced vibrations and resonance | Autumn | | 3.6.1.4 Forced vibrations and resonance Qualitative treatment of free and forced vibrations. Resonance and the effects of damping on the sharpness of resonance. Examples of these effects in mechanical systems and situations involving stationary waves. | Links from GCSE: Year 9: Forces and motion, including vectors and scalars. Year 10 energy stores, including kinetic and potential energy. Year 11: Newton's laws Links from Year 12 AS Physics: Mechanics and Materials unit: Vectors and scalars, Newton's laws, Work and power | |---|--------|--|---|--| | 3.6 Further mechanics and thermal physics 3.6.2 Thermal physics 3.6.2.1 Thermal energy transfer | Spring | MS 1.5 / PS 2.3 / AT a, b, d, f Investigate the factors that affect the change in temperature of a substance using an electrical method or the method of mixtures. Students should be able to identify random and systematic errors in the experiment and suggest ways to remove them. | 3.6.2.1 Thermal energy transfer Internal energy is the sum of the randomly distributed kinetic energies and potential energies of the particles in a body. The internal energy of a system is increased when energy is transferred to it by heating or when work is done on it (and vice versa), eg a qualitative treatment of the first law of thermodynamics. Appreciation that during a change of state the potential energies of the particle ensemble are | Links from KS3: Heating and cooling in year 8, including internal energy. Links from GCSE: Year 10 Energy stores and transfers Year 10 Thermal energy and insulation, Specific heat capacity including the RP for SHC and specific latent heat Links from Year 12 AS Physics: Materials unit (density) | | PS 1.1, 4.1 / AT k | changing but not the kinetic Mechanics unit, including work done, | | |--|---|--| | Investigate, with a data | energies. energy and power. | | | Investigate, with a data logger and temperature sensor, the change in temperature with time of a substance undergoing a phase change when energy is supplied at a constant rate. | energies. 4. Calculations involving transfer of energy. For a change of temperature: Q = mc Δ 2 where c is specific heat capacity. 5. Calculations including continuous flow. For a change of state Q = ml where l is the specific latent heat. | | | | | | | | | | | | | | | | T | T | T = | | |---------------------|---------|------------------------|--|---| | 3.6 Further | Spring/ | MS 3.3, 3.4, 3.14 / AT | 3.6.2.2 Ideal gases | Links from KS3: | | mechanics and | summer | а | | Destidents of the section of 7 | | thermal physics | | | 1. Gas laws as experimental | Particles in chemistry year 7, | | 3.6.2 Thermal | | | relationships between p, V, T and | pressure in year 8 forces extension unit. | | physics | | | the mass of the gas. | | | priysies | | | 2. Concept of absolute zero of | Links from GCSE: | | 3.6.2.2 Ideal gases | | | temperature. | Ideal gas equation PV=nRT in chemistry | | | | | 3. Ideal gas equation: pV = nRT for | Tacar 645 equation 1 v Titt in enemistry | | | | | n moles and pV = NkT for N
molecules. | Pressure and gases in year 9 | | | | | 4. Work done = $p\Delta V$ | Energy and work done in Year 10 | | | | | 5. Avogadro constant N A, molar | Lifergy and work done in real 10 | | | | | gas constant R, Boltzmann | Forces and motion in year 9 | | | | | constant k | mamantum in year 11 | | | | | 6. Molar mass and molecular mass. | momentum in year 11 | | | | | | Links from Year 12 AS Physics: | | | | | | | | | | | | mechanics unit (including forces and motion, momentum, Newton's laws of | | | | | | motion, vectors and scalars). | | | | | | | | | | | | Required practical 8: | | | | | | Investigation of Boyle's law | | | | | | (constant temperature) and Charles's law (constant pressure) for | | | | | | a gas. | 300 | 9% Q, | 中方面 | |------------|-------|-----| | | | | | Ontion 2.12 | Summer | 2.12.1 The discovery of the electron | Links from KS4: | |--------------------------------|--------|--|---| | Option: 3.12
Turning Points | Summer | 3.12.1 The discovery of the electron | LINKS ITOM K34: | | Tarring Fornes | | 1 Cathode rays | Atomic structure | | 3.12.1 The | | 2 Thermionic emission of electrons | Forces and motion Energy stores and transfers | | discovery of the | | | Electric fields | | electron | | 3 Specific charge of the electron | Optics (refraction and lenses) | | 3.12.2 Wave- | | 4 Principle of Millikan's determination | Electromagnetic waves Electricity | | particle duality | | of the electronic charge, e | Licetificity | | 3.12.3 Special | | 3.12.2 Wave-particle duality | Links from AS Physics: | | relativity | | 1 Newton's corpuscular theory of | Particles unit (electrons and specific | | | | , | charge, quantum physics including | | | | light | photoelectricity and de Broglie waves) | | | | 2 Significance of Young's double slits | waves and optics unit (electromagnetic | | | | experiment | waves, Interference, refraction) | | | | 3 Electromagnetic waves | mechanics and materials unit (Forces | | | | 4 The discovery of photoelectricity | and motion, Newton's laws, work, energy and power, terminal velocity) | | | | 5 Wave-particle duality | | | | | 6 Electron microscopes | Links from A2 physics: | | | | | Electric fields, magnetic fields | | | | 3.12.3 Special relativity
1 The Michelson-Morley experiment | Further Mechanics (circular motion) | | | | 2 Einstein's theory of special | | | | | relativity | | | | | 3 Time dilation | | | | | 4 Length contraction | | | | | 5 Mass and energy | |